Monday 05th April 2021,
최윤섭의 헬스케어 이노베이션

인공지능은 의료를 어떻게 혁신할 것인가 (2) IBM Watson의 이상과 현실적 과제

 

의료 인공지능의 세 가지 유형

그러면 이제 의료 인공지능에 대해서 본격적으로 논의해보도록 하자. 현재 다양한 의료 분야에서 여러 종류의 인공지능이 발전해왔으며, 앞으로도 새로운 인공지능과 연구 결과들은 지속적으로 등장하게 될 것이다. 향후 예상되는 모든 종류의 의료 인공지능을 포괄하여 분류한다는 것은 쉬운 일이 아닐 것이다. 다만 필자는 적어도 현재까지 연구되고 있는 대부분의 의료 인공지능을 다음과 같이 세 가지 정도의 유형으로 분류할 수 있다고 본다.

  • 복잡한 의료 데이터를 분석하여 의학적 통찰력을 도출하는 인공지능
  • 이미지로 나타낼 수 있는 의료 데이터를 분석 및 판독하는 인공지능
  • 연속적인 의료 데이터를 모니터링하여 질병을 예측 및 예방하는 인공지능

첫 번째로 복잡한 의료 데이터를 분석하여 의학적인 통찰력을 도출하는 인공지능이다. 여기에서 ‘복잡한 의료 데이터’라고 한다면, 전자의무기록(EMR)이나 차트에 저장되어 있는 환자의 진료 기록이나, 환자의 진료비를 청구한 데이터, 유전체 데이터, 임상 시험 데이터 등의 의료 빅데이터를 포괄한다.

이러한 인공지능은 의료 빅데이터를 분석하여 ‘의학적 통찰력’을 도출한다. 예를 들어, 진료기록 등을 바탕으로 환자의 질병을 진료하거나 진단하거나 예측한다. 또한 유전체 데이터를 바탕으로 질병을 유발한 원인이 되는 유전적 요인을 정밀하게 찾아주고, 개별 환자에게 맞춤 처방을 내려줄 수도 있다. 특정 환자에게 가장 적합한 임상 연구가 어떤 것인지 매칭해주며, 동일한 질병의 환자라도 고위험군과 저위험군으로 분류하여 차별화된 관리를 받게 하거나, 더 나아가 사망률이나 재 입원률을 낮추고, 의료비를 절감하는 목적으로 사용할 수도 있다.

이러한 유형의 의료 인공지능 중에 가장 잘 알려진 것은 바로 IBM의 왓슨(Watson)이다. 왓슨은 현재 의료 분야에서 암환자 진료(Watson for Oncology), 유전체 분석(Watson Genomics), 임상시험 환자 매칭(Clinical Trial Matching) 등의 세 가지 서비스를 제공하고 있다. 이러한 세 가지 서비스 모두 ‘복잡한 의료 데이터’를 분석하여 ‘의학적 통찰력’을 도출한다는 첫 번째 유형에 해당함을 알 수 있다.

먼저 IBM 왓슨을 비롯한 첫 번째 유형의 의료 인공지능에 대해서 자세하게 살펴본 이후에, 두세 번째 유형에 대해서도 차례대로 논의해보도록 하겠다.

 

제퍼디, 위대한 도전

IBM의 인공지능 왓슨은 2011년 미국의 유서 깊은 퀴즈쇼 ‘제퍼디(Jeopardy!)’에서 막강한 인간 챔피언 두 명에게 압도적인 점수차로 승리를 거두면서 대중에게 화려하게 데뷔했다. 지금 의료계에서 활용되는 왓슨이 이 퀴즈쇼에서 사용된 왓슨과 동일하다고 보기는 어렵지만, 왓슨을 논하기 위해서는 이 제퍼디의 사례를 언급하지 않을 수 없다.

지금은 제퍼디의 결과로 인간 챔피언을 왓슨이 이겼다는 것이 잘 알려져 있기 때문에, ‘그런가 보다’ 하고 무감각하게 받아들여질 수 있다. 이미 과거에 IBM의 딥블루가 체스 그랜드마스터 게리 카스파로프도 이겼고, 알파고가 이세돌과 커제에게 승리를 거뒀다는 것을 알고 있기 때문에, 퀴즈쇼에서 이겼던 것도 일견 손쉬워보일 수도 있다. 하지만 그 배경을 보면 왓슨이 퀴즈쇼에서 인간 챔피언에 (그것도 제퍼디 역사상 가장 압도적인 챔피언들에게) 승리하는 과정은 결코 만만한 일이 아니었다. 제퍼디에서는 컴퓨터의 승산이 없다고 보아 IBM 내부에서조차 이 프로젝트에 대한 반대 의견이 컸을 정도였다.

IBM이 제퍼디에 도전장을 내밀게 되었던 계기로는 여러 설이 있다. 그중 한 가지는 IBM이 기술력을 과시하기 위해서 해왔던 ‘위대한 도전’의 연장선상에 있다는 것이다. 1990년대 IBM의 위대한 도전은 체스 세계 챔피언을 이기는 컴퓨터를 만드는 것이었고, 이는 딥블루와 게리 카스파로프의 대결로 이어졌다. 21세기 초기에는 세계에서 가장 빠른 컴퓨터인 블루진(Blue Gene)을 내놓기도 했다. 이러한 도전의 결과로 IBM이 첨단 컴퓨터 산업의 강자라는 지위를 공고히 할 수 있게 되었다.

141020-kasparov-deep-blue-tv-225p_a139fecbf6454f3f64acf916a64d14f2.nbcnews-ux-2880-1000

그다음 ‘위대한 도전’으로 IBM의 경영진이 선택한 문제가 바로 제퍼디였다. 제퍼디는 1964년 3월에 출범하여, 70, 80년대에 중단되다가 다시 부활하기를 거듭하면서, 다시 1984년부터 지금까지 진행되고 있는 유서 깊은 퀴즈쇼다. 제퍼디에서 세 명의 출전자가 경쟁을 하면서 문제를 풀게 된다. 이 문제는 다양한 주제에 대한 텍스트 형식으로 출제된다. 즉, 기본적으로 문제를 풀기 위해서 인간의 언어를 이해하는 것이 필요하다는 것이다.

하지만 제퍼디에서 우승하기 위해서는 훨씬 복잡하고 다양한 변수들이 작용한다. 참가자의 지식뿐만 아니라, 버저를 누르는 반응속도, 정확성, 게임 전략 등이 관여하기 때문이다. 20분에 걸쳐서 총 5만 4,000달러가 걸린 60개 문제를 놓고 세 명이 경쟁을 벌이는 것이다. 어떤 문제는 쉽지만, 어떤 문제는 매우 어렵다. 때로는 평범한 사람은 풀기 어려운 말장난과 같은 문제가 출시되기도 한다.

예를 들어, 1994년 11월에 방영된 왕중왕전에서는 ‘가구’라는 카테고리에 500달러가 걸린 다음의 문제가 출제되었다. “골동품 진열을 위해 만든 가구로, 가느다란 버팀목으로 지지되는 몇 단의 선반으로 된 ‘이것’의 프랑스어 이름입니다”가 문제였는데 답은 ‘에타제르’였다. 왓슨이 제퍼디에서 실제로 풀었던 문제 중의 하나는 ‘미국 도시’의 카테고리에서 “이 도시의 가장 큰 공항은 제2차 세계대전 영웅의 이름을 따서 명명되었고, 두 번째로 큰 공항은 제2차 세계대전 중의 전투 이름을 땄습니다”였다. 정답은 시카고였다. (당시 큰 점수차로 앞서 나가던 왓슨은 이 문제에 캐나다의 도시인 ‘토론토’라고 대답해서 틀렸다.)

평균적으로 출연자들은 3-4초 정도 문제를 읽고 생각한 후 버저를 누른다. 만약 문제를 맞히면 문제에 걸린 상금을 따고, 틀리면 점수에서 해당 상금만큼 깎임과 동시에 다른 두 명의 출연자에게 기회가 주어진다. 즉, 제퍼디에서 좋은 성적을 올리기 위해서는 3초 내외로 빠르게 답을 떠올리고, 부저를 눌러야 할뿐만 아니라, 자신의 답이 어느 정도 정확한지까지 스스로 판단해야 한다. 즉, 자신의 점수, 상대방의 점수, 내가 떠올린 답이 정답일 가능성 등을 순식간에 판단해야 한다는 것이다.

여기에 네 개의 ‘와일드 카드’ 때문에 게임 전략은 더 복잡해진다. 제퍼디의 60개 문제 중의 세 개는 무작위로 ‘데일리 더블’이라는 문제다. 이 때 참가자는 문제의 카테고리만 보고 자신의 상금 일부 혹은 전체를 걸 수 있다. 틀리면 걸었던 돈을 잃고, 맞히면 그 두 배를 벌 수 있다. 이론적으로 한 명이 세 개의 데일리 더블을 모두 골라서 맞출 수 있으면 상금을 8배까지 불릴 수 있게 되는 것이다.

더 복잡한 것은 마지막 문제인 ‘파이널 제퍼디’이다. 이 때는 한 명이 아닌 세 명의 출연자 모두, 말이 아니라 글로 답을 써내게 된다. 이 때도 상금을 걸게 되는데, 현재 나와 상대방의 점수, 그리고 나와 상대방이 문제를 맞출 확률 등을 계산하면 경우의 수가 많아진다. 1분도 안 되는 시간 내에 참가자들은 여러 시나리오의 확률을 머리속으로 계산해야 한다.

alex1Jeopardy!

 

제퍼디의 슈퍼스타

왓슨이 제퍼디에서 대결한 인간 챔피언들은 이러한 복잡한 퀴즈쇼에서 말 그대로 위대한 업적을 이룬 챔피언이었다. 특히 켄 제닝스(Ken Jennings)는 제퍼디가 배출한 슈퍼스타였다. 프로그램 초기에 제퍼디는 한 사람이 다섯 번 연속으로 우승할 수 없다는 규칙이 있었다. 만약 이런 룰이 없으면 한 명이 너무 오래 퀴즈쇼를 독식할 수 있기 때문이었다. 만약 그런 상황이 발생했을 때, 그 사람이 대중에게 호감을 주는 사람이라는 보장은 없었으므로 제작진으로서는 위험 부담이 있었다.

제작진은 2003년도 이르러서야 고민 끝에 이 제한을 풀었다. 그랬더니 2004년 6월에 처음 출연해서 ‘파이널 제퍼디’를 아슬아슬하게 통과한 호리호리한 인상의 컴퓨터 프로그래머가 계속해서 등장하며 이기고, 이기고, 또 이겼다. 7월이 되어 켄 제닝스가 38연승을 기록하자 제퍼디는 전년 동기 대비 시청률이 50% 상승하여 매일 1,500만 명의 이목을 집중시켰다. 그 달에 제퍼디는 ‘CSI 과학수사대’에 이어서 시청률 2위를 기록했다.

121101_QUIZ_Jennings.jpg.CROP.original-original (1)제퍼디의 슈퍼스타, 켄 제닝스

경쟁자에 따르면 켄 제닝스는 다른 챔피언과 여러 면에서 달랐다. 만물박사였을 뿐만 아니라,  ‘버저 필’이라는 것이 있어서, 매우 정확한 타이밍에 부저를 누를 수 있었다. 제퍼디에서는 문제의 낭독이 끝나고 나면, ‘제퍼디’ 보드의 불이 켜지면서 버저를 눌러도 된다는 신호가 나온다. 너무 일찍 버저를 누르면 1/4 초 동안 버저가 차단되는 벌칙을 당해서 경쟁자들에게 기회가 돌아간다. 너무 늦게 눌러도 기회를 놓친다. 제닝스는 마법과 같은 ‘버저 리듬감’을 갖고 있었다. 또한 어떠한 상황에서도 초인적일 정도로 침착했다.

그는 2005년에 쓴 회고록 ‘브레이니악(Brainiac)’에서 이렇게 썼다. “이상한 느낌이다. 아직 답을 말할 수는 없지만 머리 뒤쪽에서 불빛이 반짝인다. 뭔가 연관이 나타나고, 머리가 그 연관을 확인하느라 정신없이 돌아가는 동안 손가락은 이미 버저를 누르고 있다.”

켄 제닝스는 이후 유래 없는 74연승을 거두며 317만 달러를 거둬들이며 2004년 11월까지 1년 반 동안 챔피언의 자리에 있었다. 그동안 절반 이상의 문제에서 버저 싸움을 이겼으며, 정답률은 92%를 기록했다. (이는 보통 챔피언보다 10% 이상 높은 결과였다.) 한마디로 켄 제닝스는 ‘만물박사’의 전형을 대표한다고 해도 과언이 아니었다. 이런 켄 제닝스를 보고 IBM이 도전의식을 느낀 것도 무리는 아니었을 것이다. 그런 의미에서 어떤 사람들은 사실 왓슨이 탄생하게 된 것은 제닝스 덕분이었다고 하기도 한다.

왓슨이 대결한 또 한 명의 챔피언은 브래드 러터(Brad Rutter)였다. 러터는 제퍼디의 5연승 제한 룰이 바뀌기 이전의 챔피언이었다. 그는 2005년 ‘최후의 왕중왕전’에서 켄 제닝스, 제롬 베레드와 함께 경쟁한 그는 3일에 걸친 시함에서 6만 2,000점으로, 3만 4,599점을 기록한 제닝스와 2만 600점을 기록한 베레드를 제치고 우승을 차지했다. 결국 브래드 러터는 왕중왕전에서 200만 달러를 따서, 총 340만 달러의 상금을 벌어들여 제퍼디 역사상 가장 많은 상금을 가져간 사람이 되었다.

켄 제닝스와 브래드 러터. 제퍼디가 탄생시킨 이 위대한 두 명의 챔피언이 바로 왓슨이 대결해야 했던 상대였다.

 

왓슨, 화려하게 데뷔하다

왓슨이 제퍼디의 출전이 결정되면서 4년에 걸친 IBM의 노력이 시작되었다. 이 개발팀을 이끌었던 데이비드 페루치를 비롯한 25명의 박사 연구진들이 역량을 결집했다. 개발 초창기에는 왓슨이 (당시 개발팀에는 ‘제퍼디 컴퓨터’라고 불렸다) 문제를 맞추는 것은 차치하고서, 답을 도출하는데 2시간이 걸렸다고 한다. 왓슨이 제퍼디의 문제를 풀기 위해서는 인간의 언어를 이해하고, 답을 도출하고, 답의 정확성을 계산하는 과정을 3-4초 내에 하는 것이 필요했다. 이를 목소리로 읽어내야 했으며, ‘데일리 더블’, ‘파이널 제퍼디’에서는 얼마의 돈을 걸 것인지도 계산해야 했다.

왓슨의 개발이 진행되면서, 2010년 가을의 제퍼디 왕중왕전에 출전할 사람들을 대상으로 총 60회의 연습 게임을 포함한 여러 번의 모의고사를 치렀다. 이 연습게임을 거치면서 왓슨의 강점과 약점을 점검하면서 계속 개선시켜나갔다. 연습게임 초기에 왓슨은 일반 참가자들을 대상으로 64% 의 승률을, 개선된 이후에는 왕중왕전 참가자들을 대상으로 67%의 승률을 올렸다.

사실 제퍼디의 준비 과정에서 크게 이슈가 되었던 것 중의 하나는 바로 왓슨이 버저를 누르는 방식과 속도에 관한 것이었다. 앞서 강조했듯이 제퍼디는 단순히 답을 알면 승리하는 것이 아니라, 부저를 빨리 눌러야만 답을 말할 기회를 얻을 수 있었다. 그리고 켄 제닝스와 브래드 러터는 부저를 누르는데 매우 뛰어난 감각을 가지고 있었다.

제퍼디 측에서는 왓슨이 전기적인 신호를 보내어서 부저를 누르면, 물리적으로 부저를 손으로 눌러야 하는 인간에게 너무 불리하다고 생각했다. 때문에 왓슨도 일종의 ‘손가락’에 해당하는 별도의 하드웨어를 만들어서, 물리적으로 부저를 누르도록 했다. 왓슨 측은 이것도 불만이었다. 인간 참가자는 문제의 낭독이 끝나고, ‘제퍼디’ 보드에 불이 들어오는 순간을 예측해서 미리 버저를 누를 수 있었다.

결국 왓슨은 ‘손가락’을 달았으며, 답을 찾았다고 생각하면 세 번 연이어 단추를 눌렀다. IBM 측의 계산에 따르면, 이 때문에 왓슨은 8 밀리 초가 더 걸리게 되었다. 나중에 켄 제닝스는 옆 연단에 있는 ‘왓슨의 손’이 세 번 연속 스타카토로 버저를 누를 때마다 “터미네이터 사운드 트렉을 듣는 기분이었다”고 술회하기도 했다.

maxresdefault-6인간 챔피언과 왓슨의 최종 결과

본 경기가 진행되기 전날과 당일에는 켄 제닝스와 브래드 러터, 왓슨이 총 세 번에 걸쳐서 연습 경기가 진행되었다. 이 연습에서 세 참가자는 사이좋게 한 번씩 승리했다. 그리고 본 게임에서는 왓슨이 2연속 경기에서 전반부와 후반부 모두를 석권하며 7만 7,147달러를 기록하여 우승하였고, 제닝스는 2만 4,000달러로 2위를, 러터가 2만 1,600달러로 근소하게 3위를 기록했다.

왓슨이 본 경기에서도 순탄하게 이긴 것 같지만, 꼭 그렇지도 않았다. 잘 알려지지 않았으나, 켄 제닝스는 마지막에 ‘인간적인 실수’로 기회를 날려먹었다. 게임 막바지에 제닝스는 2만 달러로 왓슨에 2,000달러 앞서 있었다. 이때 문제의 선택권은 제닝스가 가지고 있었는데, 데일리 더블을 고를 수 있으면 더 앞서 나갈 수 있었다. 제닝스의 이론에 따르면 제퍼디에서 데일리 더블이 같은 액수로 두 번 나오지 않는다. 제닝스는 첫 번째 데일리 더블이 1,600달러에서 나왔던 것으로 기억하고 있었기 때문에, 1,200달러 짜리의 문제를 선택했다.

그런데 알고 보니 제닝스는 거꾸로 기억하고 있었다. 결국 이 문제를 맞힌 왓슨이 1,600달러 문제를 골랐고, 이 문제가 결국 데일리 더블이었다. 데일리 더블이 선택되었다는 특유의 ‘스타워즈’ 총소리가 울려 퍼질 때 IBM 연구원들은 환호를 질렀다. 그 순간 켄 제닝스가 왓슨을 역전할 가능성이 없어졌기 때문이다. 단순한 기억력에 대해서라면 인간이 컴퓨터를 따라올 수 없다. 제닝스는 이후 몇 년을 두고 이 실수에 대해서 후회했다고 술회한 바 있다.

마지막 문제인 ‘파이널 제퍼디’ 문제에 답하면서, 켄 제닝스는 정답 아래에 심슨 가족의 대사를 인용하여 “새로운 컴퓨터 절대군주의 등장을 환영하는 바입니다 (I for one welcome our new computer overlords)”라고 썼다. 또한 그는 게임이 끝난 직후 ‘슬레이트(Slate)’에 기고한 글에서 다음과 같이 밝혔다.

“20세기에 새로운 조립 라인 로봇에 공장의 직업들이 사라졌듯이, 브래드와 나는 새로운 종류의 ‘사고하는’ 기계에 의해서 밀려난 최초의 지식근로자가 될 것입니다. ‘퀴즈쇼 참가자’는 아마도 왓슨에 의해서 밀려난 최초의 직업이라고 할 수 있겠지만, 나는 이것이 결코 마지막은 아닐 것이라고 확신합니다.”

켄 제닝스의 말은 얼마 지나지 않아서 옳았음이 드러났다. 왓슨의 도전은 제퍼디에서 끝나지 않았다. 왓슨이 그다음 도전 상대로 고른 것은 바로 뉴욕의 암 센터로 들어가서 의학을 학습하여 폐암을 치료하겠다는 것이었다.

(참고로 상기의 제퍼디에 참가하기 위한 왓슨의 개발 이야기는, 스티븐 베이커의 ‘왓슨 인간의 사고를 시작하다 (원제: Man vs Machine)’에서 자세하게 다뤄지고 있다. 별도의 참조 문헌이 없는 한 , 왓슨의 제퍼디 관련 부분은 이 책의 내용을 인용했음을 밝힌다. 왓슨의 초기 개발 이야기가 매우 상세하게 다뤄지고 있는 흥미로운 책이라 관심 있으신 분은 읽어볼 가치가 있을 것이다. 다만 제퍼디 우승 시점까지만 다루기 때문에, 의료 분야 진출에 대해서는 거의 다뤄지지 않는다.)

 

왓슨, 병원에 가다

제퍼디 이후 왓슨은 본격적으로 의료 분야에 진출하여 암 환자의 진료에 도전하겠다고 발표한다. 제퍼디 당시에는 알려지지 않았지만, 2011년 5월에 발표된 포브스 기사를 보면 이미 18개월 전부터 메릴랜드 대학의 엘리엇 시걸(Eliot Siegel) 박사팀과 협력하여 각종 의학 논문, 교과서 등의 연구 결과들, MD앤더슨이나 존스홉킨스 등에서 나온 질병 데이터를 학습하